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The stereoselectivity of free radical reactions is an area 
of considerable current interest.':' Studies by Giese on 
five- and six-membered ring radicals as well as  on vinylic 
radical systems have clearly demonstrated the dominance 
of steric influences of vicinal substituents in determining 
the facial selectivity in anti-selective alkene addition and 
hydrogen-transfer reactions." ' 

A single fluorine substituent is virtually unique in that 
it does not give rise to a steric influence on reaction rates 
except in the most demanding of transition states. For 
example, we have demonstrated clearly that the nonsteric 
influences of the vicinal fluorine substituent in fluoroal- 
lene (MFA) outweigh any possible steric effect in giving 
rise to the syn-selectivity which is generally observed in 
cycloadditions to MFAs C?FC:~ bond." 
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Believing that factors which influence the p-diastereo- 
selectivity exhibited by radicals in their various reactions 
should he closely related to those which determine 
x-diastereoselectivity in reactions of r-bonds, we have 
initiated a program to elucidate the influence of vicinal 
fluorine substituents on the diastereoselectivity ofradical 
reactions. In this report we present preliminary results 
which contrast the anti-selectivity exhibited by the 
/j-fluorocyclopentyl radical 2 with the syn-selectivity of 
the /(-fluoro-a-styryl radical 6 in their hydrogen-abstrac- 
tion reactions with n-Bu:,SnH. 

In probing the behavior of the 2-fluorocyclopentyl 
radical, trans-2-hromofluorocyclopentane, 1," was treated 
with n-Bu:,SnD in benzene a t  50 "C, and the 2-deuteri- 
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ofluorocyclopentane product mixture was examined by 
"-NMR spectroscopy. The 'H-decoupled spectrum 
showed two doublets (due to '"F-coupling) a t  d 1.93 and 
1.73 with :'JoF couplings of 3.7 and 5.5 Hz and with a 
ratio of 23:77, respectively. The minor doublet a t  h 1.93 
was demonstrated, by virtue of an  independent synthe- 
sis?] to he due to the cis-2-deuterio isomer 3, which 
derived from deuterium abstraction syn to the vicinal 
fluorine substituent. 
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Although the stereoselectivity of reduction of other 
D-substituted cyclopentyl radicals is not known, Giese has 
found that /s-methyl- and /+ethoxy substituents direct 
attack of acrylonitrile and other alkenes with significant 
anti-selectivity.'.," A steric rationale was, of course, 
preferred to explain these results. Can a steric rationale 
also be used to explain our 2-fluorocyclopentyl radical 
results? In  view of the MFA results and those of the 
8-fluoro-a-styryl radical which will follow, this seems 
unlikely. 

The interaction of the fluorine substituent with the 
radical site in the 2-fluorocyclopentyl radical 2 differs 
significantly from that  in MFA because the C-F bond 
in 2, unlike that  in MFA, is not eclipsed with the p 
orbital. Indeed, an optimization of the geometry of 2 
(UHF/6-31G*) indicates that  its C-F bond is in an  almost 
perfectly staggered position relative to the SOMO orbital 
and the H-CI-C2 plane (Figure 1). 

A radical system which better emulates the substituent 
interactions in MFA is the p-fluoro-a-styryl radical 6, 
which can be formed by photoinitiated decomposition of 
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According to Gand~lf i , '~  the cause of the observed syn- 
selectivity of MFA in its cycloadditions has to do with 
how the stabilizing vicinal interactions of the eclipsed 
fluoro- and hydrogen-substituents accommodate the bend- 
ing of the allene which takes place as one approaches 
the respective syn and anti transition states. When 
similar calculations (UHF/AMl) were applied to the 
P-fluoro-a-styryl radical system 6, we found that, as in 
the case of MFA, the process ofsyn-pyramidalization (9) 
(a bending of 30') was easier than the process of anti- 
pyramidalization (10) by about 1 kcal/mol. This differ- 
ence can be attributed to the apparent fact that  the C-F 
bond tolerates syn-pyramidalization better than does the 
C-H bond,':' since it was found that the change in energy 
upon syn-pyramidalization of 6 was lower than that of 
an equal degree of pyramidalization of its pure hydro- 
carbon analog, the a-styryl radical, again by ca. 1 kcal/ 
mol. 
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Figure 1. 

Barton ester 5." In this linear, ..r-radical both 
the C-F and the C-H bonds are fully eclipsed with the 
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phenyl-delocalized singly-occupied p orbital. Thus one 
would expect that the relative impact, both steric and 
electronic, of these two substituents should be maximized 
in this system. When 6 was generated in the presence 
of 1.1 equiv of n-Bu3SnH, reduction products 7 and 8 were 
formed in a ratio of 6733." The syn-selectivity exhibited 
by 6 in this process precludes steric effects from having 
been the decisive factor in determining the stereoselec- 
tivity of H-atom transfer to either cyclopentyl radical 2 
or a-styryl radical 6. That being the case, what then is 
causing their disparate stereoselectivities? 

1171 Barton ester 5 was synthesized in the usual manner'Rfrom its 
carboxylic acid precursor, which was prepared by a procedure similar 
to that of McDonald e t  a1.lS The carboxylic acid was fully characterized, 
including C H  analysis, while 6. prepared almost quantitatively in situ 
because of its great thermal and phataehemical lability, was character- 
ized spectroscopically 1'". 0 -105.0, 
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l a t h  -102.2 and -108.01 in a ratio of 5842 lielatiw stereochemistry 
yet unknown). Both sets ofproduets were demonstrated to be formed 
under kinetic control. with the ratio of Droduets remainins unchaneed " 
during the course of the reaction. 
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Since cyclopentyl radical 2 does not have any b-bonds 
eclipsed with the SOMO orbital, such interactions as 
described for 6 should have considerably less importance 
in the case of 2. Consistent with our approach to the 
analysis of 6, we examined the energetic impact of syn 
versus anti-pyramidalization of radical 2. Such calcula- 
tions (UHF/6-31G*Y2' indicated that a 15" bendingtoward 
the anti transition state was favored by ea. 0.8 kcal/mol 
over an  equal degree of bending toward the syn transition 
state. From an examination of the optimized pyrami- 
dalized radical structures, which are meant to emulate 
the competing syn and anti transition states, we believe 
that torsional strain differences are the likely source of 
the observed disparity in the energy required to effect 
anti- versus syn-pyramidalization. 

Although one can not yet be certain as to  the exact 
combination of factors which cause the 2-fluorocyclopen- 
tyl radical's observed anti-selectivity, what is clear is that 
steric effects are not involved. It is also clear that  
systems which are rigid and have their B-vicinal C-X 
and/or C-H bonds coplanar with the reactive A 0  or MO 
are uniquely influenced by the p-substituent, and that 
any deviation from such coplanarity leads to a completely 
different mode of substituent interaction. Moreover, our 
results indicate that, in interpreting results on the 
stereochemical directing influence of other b-substituents, 
particularly nonalkyl substituents, one should be cogni- 
zant that factors other than steric may play a significant 
role. 
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